(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(0, y) → 0
minus(s(x), y) → if_minus(le(s(x), y), s(x), y)
if_minus(true, s(x), y) → 0
if_minus(false, s(x), y) → s(minus(x, y))
gcd(0, y) → y
gcd(s(x), 0) → s(x)
gcd(s(x), s(y)) → if_gcd(le(y, x), s(x), s(y))
if_gcd(true, s(x), s(y)) → gcd(minus(x, y), s(y))
if_gcd(false, s(x), s(y)) → gcd(minus(y, x), s(x))

Rewrite Strategy: INNERMOST

(1) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

(2) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

le(0', y) → true
le(s(x), 0') → false
le(s(x), s(y)) → le(x, y)
minus(0', y) → 0'
minus(s(x), y) → if_minus(le(s(x), y), s(x), y)
if_minus(true, s(x), y) → 0'
if_minus(false, s(x), y) → s(minus(x, y))
gcd(0', y) → y
gcd(s(x), 0') → s(x)
gcd(s(x), s(y)) → if_gcd(le(y, x), s(x), s(y))
if_gcd(true, s(x), s(y)) → gcd(minus(x, y), s(y))
if_gcd(false, s(x), s(y)) → gcd(minus(y, x), s(x))

S is empty.
Rewrite Strategy: INNERMOST

(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(4) Obligation:

Innermost TRS:
Rules:
le(0', y) → true
le(s(x), 0') → false
le(s(x), s(y)) → le(x, y)
minus(0', y) → 0'
minus(s(x), y) → if_minus(le(s(x), y), s(x), y)
if_minus(true, s(x), y) → 0'
if_minus(false, s(x), y) → s(minus(x, y))
gcd(0', y) → y
gcd(s(x), 0') → s(x)
gcd(s(x), s(y)) → if_gcd(le(y, x), s(x), s(y))
if_gcd(true, s(x), s(y)) → gcd(minus(x, y), s(y))
if_gcd(false, s(x), s(y)) → gcd(minus(y, x), s(x))

Types:
le :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
minus :: 0':s → 0':s → 0':s
if_minus :: true:false → 0':s → 0':s → 0':s
gcd :: 0':s → 0':s → 0':s
if_gcd :: true:false → 0':s → 0':s → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s

(5) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
le, minus, gcd

They will be analysed ascendingly in the following order:
le < minus
le < gcd
minus < gcd

(6) Obligation:

Innermost TRS:
Rules:
le(0', y) → true
le(s(x), 0') → false
le(s(x), s(y)) → le(x, y)
minus(0', y) → 0'
minus(s(x), y) → if_minus(le(s(x), y), s(x), y)
if_minus(true, s(x), y) → 0'
if_minus(false, s(x), y) → s(minus(x, y))
gcd(0', y) → y
gcd(s(x), 0') → s(x)
gcd(s(x), s(y)) → if_gcd(le(y, x), s(x), s(y))
if_gcd(true, s(x), s(y)) → gcd(minus(x, y), s(y))
if_gcd(false, s(x), s(y)) → gcd(minus(y, x), s(x))

Types:
le :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
minus :: 0':s → 0':s → 0':s
if_minus :: true:false → 0':s → 0':s → 0':s
gcd :: 0':s → 0':s → 0':s
if_gcd :: true:false → 0':s → 0':s → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s

Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))

The following defined symbols remain to be analysed:
le, minus, gcd

They will be analysed ascendingly in the following order:
le < minus
le < gcd
minus < gcd

(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → true, rt ∈ Ω(1 + n50)

Induction Base:
le(gen_0':s3_0(0), gen_0':s3_0(0)) →RΩ(1)
true

Induction Step:
le(gen_0':s3_0(+(n5_0, 1)), gen_0':s3_0(+(n5_0, 1))) →RΩ(1)
le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) →IH
true

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(8) Complex Obligation (BEST)

(9) Obligation:

Innermost TRS:
Rules:
le(0', y) → true
le(s(x), 0') → false
le(s(x), s(y)) → le(x, y)
minus(0', y) → 0'
minus(s(x), y) → if_minus(le(s(x), y), s(x), y)
if_minus(true, s(x), y) → 0'
if_minus(false, s(x), y) → s(minus(x, y))
gcd(0', y) → y
gcd(s(x), 0') → s(x)
gcd(s(x), s(y)) → if_gcd(le(y, x), s(x), s(y))
if_gcd(true, s(x), s(y)) → gcd(minus(x, y), s(y))
if_gcd(false, s(x), s(y)) → gcd(minus(y, x), s(x))

Types:
le :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
minus :: 0':s → 0':s → 0':s
if_minus :: true:false → 0':s → 0':s → 0':s
gcd :: 0':s → 0':s → 0':s
if_gcd :: true:false → 0':s → 0':s → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s

Lemmas:
le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → true, rt ∈ Ω(1 + n50)

Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))

The following defined symbols remain to be analysed:
minus, gcd

They will be analysed ascendingly in the following order:
minus < gcd

(10) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol minus.

(11) Obligation:

Innermost TRS:
Rules:
le(0', y) → true
le(s(x), 0') → false
le(s(x), s(y)) → le(x, y)
minus(0', y) → 0'
minus(s(x), y) → if_minus(le(s(x), y), s(x), y)
if_minus(true, s(x), y) → 0'
if_minus(false, s(x), y) → s(minus(x, y))
gcd(0', y) → y
gcd(s(x), 0') → s(x)
gcd(s(x), s(y)) → if_gcd(le(y, x), s(x), s(y))
if_gcd(true, s(x), s(y)) → gcd(minus(x, y), s(y))
if_gcd(false, s(x), s(y)) → gcd(minus(y, x), s(x))

Types:
le :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
minus :: 0':s → 0':s → 0':s
if_minus :: true:false → 0':s → 0':s → 0':s
gcd :: 0':s → 0':s → 0':s
if_gcd :: true:false → 0':s → 0':s → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s

Lemmas:
le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → true, rt ∈ Ω(1 + n50)

Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))

The following defined symbols remain to be analysed:
gcd

(12) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol gcd.

(13) Obligation:

Innermost TRS:
Rules:
le(0', y) → true
le(s(x), 0') → false
le(s(x), s(y)) → le(x, y)
minus(0', y) → 0'
minus(s(x), y) → if_minus(le(s(x), y), s(x), y)
if_minus(true, s(x), y) → 0'
if_minus(false, s(x), y) → s(minus(x, y))
gcd(0', y) → y
gcd(s(x), 0') → s(x)
gcd(s(x), s(y)) → if_gcd(le(y, x), s(x), s(y))
if_gcd(true, s(x), s(y)) → gcd(minus(x, y), s(y))
if_gcd(false, s(x), s(y)) → gcd(minus(y, x), s(x))

Types:
le :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
minus :: 0':s → 0':s → 0':s
if_minus :: true:false → 0':s → 0':s → 0':s
gcd :: 0':s → 0':s → 0':s
if_gcd :: true:false → 0':s → 0':s → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s

Lemmas:
le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → true, rt ∈ Ω(1 + n50)

Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))

No more defined symbols left to analyse.

(14) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → true, rt ∈ Ω(1 + n50)

(15) BOUNDS(n^1, INF)

(16) Obligation:

Innermost TRS:
Rules:
le(0', y) → true
le(s(x), 0') → false
le(s(x), s(y)) → le(x, y)
minus(0', y) → 0'
minus(s(x), y) → if_minus(le(s(x), y), s(x), y)
if_minus(true, s(x), y) → 0'
if_minus(false, s(x), y) → s(minus(x, y))
gcd(0', y) → y
gcd(s(x), 0') → s(x)
gcd(s(x), s(y)) → if_gcd(le(y, x), s(x), s(y))
if_gcd(true, s(x), s(y)) → gcd(minus(x, y), s(y))
if_gcd(false, s(x), s(y)) → gcd(minus(y, x), s(x))

Types:
le :: 0':s → 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
minus :: 0':s → 0':s → 0':s
if_minus :: true:false → 0':s → 0':s → 0':s
gcd :: 0':s → 0':s → 0':s
if_gcd :: true:false → 0':s → 0':s → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s

Lemmas:
le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → true, rt ∈ Ω(1 + n50)

Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))

No more defined symbols left to analyse.

(17) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
le(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → true, rt ∈ Ω(1 + n50)

(18) BOUNDS(n^1, INF)